ABSTRACT

Adaptive filters are used in many diverse applications, appearing in everything from military instruments to cellphones and home appliances. Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® covers the core concepts of this important field, focusing on a vital part of the statistical signal processing area—the least mean square (LMS) adaptive filter.

This largely self-contained text:

  • Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions
  • Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces
  • Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton’s algorithm
  • Addresses the basics of the LMS adaptive filter algorithm, considers LMS adaptive filter variants, and provides numerous examples
  • Delivers a concise introduction to MATLAB®, supplying problems, computer experiments, and more than 110 functions and script files

Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.

chapter 1|15 pages

Vectors

chapter 2|23 pages

Matrices

chapter 4|57 pages

Discrete-Time Random Processes

chapter 5|49 pages

The Wiener Filter

chapter 7|19 pages

Newton’s and Steepest Descent Methods

chapter 8|35 pages

The Least Mean-Square Algorithm

chapter 9|62 pages

Variants of Least Mean-Square Algorithm